- Zentrobarische Regel
Zentrobarische Regel, s. Baryzentrische Regel.
http://www.zeno.org/Meyers-1905. 1905–1909.
Zentrobarische Regel, s. Baryzentrische Regel.
http://www.zeno.org/Meyers-1905. 1905–1909.
Zentrobarische Regel — Rotationskörper werden in der Geometrie Körper genannt, die durch Rotation einer erzeugenden Kurve um eine Rotationsachse gebildet werden. Die Kurve liegt dabei in einer Ebene, und auch die Achse liegt in ebenderselben. Die Kurve schneidet die… … Deutsch Wikipedia
Guldinsche Regel — Rotationskörper werden in der Geometrie Körper genannt, die durch Rotation einer erzeugenden Kurve um eine Rotationsachse gebildet werden. Die Kurve liegt dabei in einer Ebene, und auch die Achse liegt in ebenderselben. Die Kurve schneidet die… … Deutsch Wikipedia
Baryzentrische Regel — (zentrobarische, Guldinsche Regel), von dem Jesuiten Guldin in dem Werke »De centro gravitatis« (1635–41) angegebene, aber schon dem Pappos (s. d.) bekannte Regel zur Bestimmung des Rauminhaltes und der Oberfläche eines Umdrehungskörpers (vgl.… … Meyers Großes Konversations-Lexikon
Baryzentrische Regeln — Rotationskörper werden in der Geometrie Körper genannt, die durch Rotation einer erzeugenden Kurve um eine Rotationsachse gebildet werden. Die Kurve liegt dabei in einer Ebene, und auch die Achse liegt in ebenderselben. Die Kurve schneidet die… … Deutsch Wikipedia
Drehkörper — Rotationskörper werden in der Geometrie Körper genannt, die durch Rotation einer erzeugenden Kurve um eine Rotationsachse gebildet werden. Die Kurve liegt dabei in einer Ebene, und auch die Achse liegt in ebenderselben. Die Kurve schneidet die… … Deutsch Wikipedia
Guldinsche Regeln — Rotationskörper werden in der Geometrie Körper genannt, die durch Rotation einer erzeugenden Kurve um eine Rotationsachse gebildet werden. Die Kurve liegt dabei in einer Ebene, und auch die Achse liegt in ebenderselben. Die Kurve schneidet die… … Deutsch Wikipedia
Rotationskörper — werden in der Geometrie Körper genannt, die durch Rotation einer erzeugenden Kurve um eine Rotationsachse gebildet werden. Die Kurve liegt dabei in einer Ebene, und auch die Achse liegt in ebenderselben. Die Kurve schneidet die Achse nicht,… … Deutsch Wikipedia
Rotationsvolumen — Rotationskörper werden in der Geometrie Körper genannt, die durch Rotation einer erzeugenden Kurve um eine Rotationsachse gebildet werden. Die Kurve liegt dabei in einer Ebene, und auch die Achse liegt in ebenderselben. Die Kurve schneidet die… … Deutsch Wikipedia
Guldin — Paul Guldin. Paul Guldin, ursprünglich Habakuk Guldin (* 12. Juni 1577 in St. Gallen; † 3. November 1643 in Graz), war Astronom und Professor für Mathematik in Graz und Wien. Er lernte zuerst die Goldschmiedekunst, trat 1597 zum Katholizismus … Deutsch Wikipedia
Habakuk Guldin — Paul Guldin. Paul Guldin, ursprünglich Habakuk Guldin (* 12. Juni 1577 in St. Gallen; † 3. November 1643 in Graz), war Astronom und Professor für Mathematik in Graz und Wien. Er lernte zuerst die Goldschmiedekunst, trat 1597 zum Katholizismus … Deutsch Wikipedia